Menu ☰

Family Matters 1901-1910

High School Student 1911-1920

Youth Movement 1911-1920

University Student 1920-1927

Heisenberg's Doctorate 1920-1927

The Quantum Mechanic 1925-1927

The Uncertainty Principle 1925-1927

The Copenhagen Interpretation 1925-1927

Professor in Leipzig 1927-1942

Fission Research 1939-1945

Reviving German Science 1946-1976

Physics and Philosophy 1955-1956

A Brief Chronology 1901-1976

Heisenberg Home Links and Sources Site Information Site Map Feedback Web Exhibits Portal © American Institute of Physics

Family Matters

1901-1910

High School Student

1911-1920

Youth Movement

1911-1920

University Student

1920-1927

Heisenberg's Doctorate

1920-1927

The Quantum Mechanic

1925-1927

The Uncertainty Principle

1925-1927

The Copenhagen Interpretation

1925-1927

Professor in Leipzig

1927-1942

Fission Research

1939-1945

Reviving German Science

1946-1976

Physics and Philosophy

1955-1956

A Brief Chronology

1901-1976

Old Quantum Theory

Some of the most beautifully drawn diagrams of the quantum orbits of electrons in the Bohr-Sommerfeld theory of various atoms. In the more modern view, the positions of electrons would be shown as a fuzzy cloud. From H. A. Kramers and Helge Holst, The Atom and the Bohr Theory of its Structure (New York: Alfred A. Knopf, 1926)

How are atoms structured? According to the so-called old quantum theory, first enunciated by Bohr in 1913 and elaborated by Sommerfeld three years later, atoms consist of a tiny positive nucleus surrounded by negative electrons which orbit the nucleus like planets around a sun. Nearly all the mass of the atom is concentrated in the nucleus. The number of electrons is given by the "atomic number" of the element. The electrons are held in their orbits around the nucleus by electrical attraction, similar to the gravitational attraction that holds the planets in their orbits around the sun in our solar system. But unlike our solar system, the energies of the electrons can occur only in certain fixed amounts, which correspond to certain fixed orbits. These characteristic quantities, or "quanta," of energy made this a "quantum theory" of the atom. Einstein had showed that light too could have energy only in fixed units or quanta of energy. Einstein called these "light quanta." Today they are called photons.

An electron in an atom could jump up from one fixed orbit to an orbit of higher energy, but only if it absorbed energy precisely equal to the difference of energy between the orbits. Likewise, an electron could jump down to an open lower-energy orbit by giving off energy precisely equal to the energy drop. These two events are the origins of the so-called absorption and emission spectra of the elements--their characteristic colors.

The quantum behavior of electrons in atoms contradicted not only the "classical" mechanics of Sir Isaac Newton, but also the classical electromagnetic theory, which was developed in the nineteenth century and was spectacularly successful for describing light and radio waves. Even worse, while an electron orbited in a quantum energy state, it did not radiate away its energy as the electromagnetic theory required. Instead, as Bohr postulated but could not explain, each quantum orbit could be considered a "stationary state," with energy losses or gains occurring only when the electrons jumped between the stationary states.

In 1916, Sommerfeld enhanced the Bohr theory of the atom by introducing non-circular orbits, by allowing quantized orientations of the orbits in space, and by taking into account the relativistic variation in the mass of the electron as it orbited the nucleus at high speed.

The Bohr-Sommerfeld quantum theory of the atom proved remarkably successful for the simplest case, a hydrogen atom (one electron orbiting a nucleus). Difficulties began to arise, however, for more complicated atoms in the early 1920s.